

ProEM®+:1600

The ProEM+: 1600 EMCCD cameras from Princeton Instruments are the most advanced spectroscopy EMCCD cameras on the market. The 1600 x 200 and 1600 x 400 format sensors, featuring Pl's exclusive eXcelon[®]3 technology, provide the lowest etaloning in the NIR, and enhanced QE in blue and red. These cameras feature a high speed Electron Multiplying (EM) mode to capture fast kinetics as well as a normal CCD mode with very low read noise for precision photometry. The $ProEM+: 1600^2/1600^4$ cameras are deep cooled using either air or liquid, while the all metal, hermetic vacuum seals are warrantied for life – the only such guarantee in the industry. Both models feature the latest Gigabit Ethernet (GigE) interface to allow remote operation over a single cable without the need for custom frame grabbers.

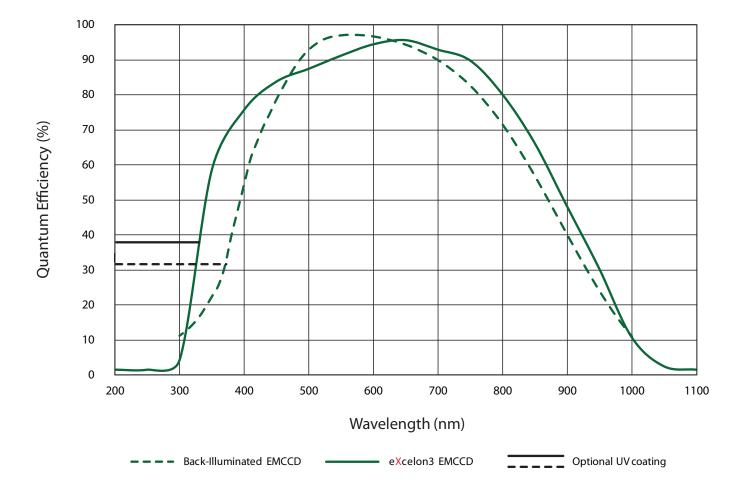
FEATURES	BENEFITS		
eXcelon3 technology	Higher QE in the UV and near IR regions; extremely low etaloning		
1600 x 200 and 1600 x 400 format	16 µm pixels for high spectral resolution		
Electron multiplication (EM) gain	Amplify weak signals above the read noise floor		
OptiCAL	Linear, absolute EM gain calibration using built in precision light source		
Improved BASE correction routine	Baseline Active Stability Engine: Bias correction ensures a flat and highly stable baselin for quantitative measurements		
Deep thermoelectric cooling with air or liquid recirculation	Minimizes dark current, allowing long exposure times. Use convenient forced-air cooling or liquid cooling for vibration-sensitive environments		
Single fused silica vacuum window	Minimizes reflection losses from the UV to the NIR; Optional AR coating and wedge windows are available		
Dual redout modes	Individually optimized signal chains for a true 2-in-1 camera configuration, for high speed (EM mode) or long integration (normal CCD mode) applications		
Readout rates of 1, 4 and 8 MHz in EM mode	Acquire spectral data at over 4000 frames per second		
100 kHz readout	Low noise register provides conventional CCD readout when EM gain is not needed		
Ultralow binned read noise	Negligibly increases noise, unlike in CMOS detectors		
Gigabit Ethernet (GigE)	Reliable data transmission over 50 m for remote operation		
Standard spectroscopy flange mount	Easily mounts to IsoPlane, Acton Series, and many other spectrometers		
Optional: LightField [®] (for Windows 8/7, 64-bit) Or WinView/Spec (for Windows 8/7/XP, 32-bit)	Flexible software packages for data acquisition, display and analysis; LightField offers intuitive, cutting edge user interface, IntelliCal® and more.		
PICAM (64-bit) / PVCAM (32-bit) software development kits (SDKs)	Compatible with Windows 8/7/XP, and Linux; Universal programming interfaces for easy custom programming.		
LabVIEW® and MATLABI®	Easy integration of camera into complex experiments.		
Ultra-low correlated noise	Strategic circuit design minimizes non-random noise in spectra and images		

Applications:

Scanning Confocal Spectroscopy, Hyperspectral Imaging and Single Molecule Spectroscopy

ProEM+: 1600 eXcelon3 Rev. P4.1

	ProEM+: 1600 ² eXcelo	n3 excelon® ProEM+: 1600	⁴ eXcelon3	
Sensor Format	Back-illuminated EMCCD with extechnology. 3.2 mm sensor heigh high-speed data acquisition.	technology. 6.4 mm s		
CCD format	1600 X 200, 16 µm pixels 25.6 X 3.2 mm (optically centered		1600 X 400, 16 μm pixels 25.6 X 6.4 mm (optically centered)	
	EM mode Low noise mode		oise mode	
Read noise*	 15 e- rms @ 1 MHz 27 e- rms @ 4 MHz 75 e- rms @ 8 MHz Read noise effectively reduced t with on-chip multiplication gain e 			
Spectrometric well capacity*	350 ke-	200 ke-		
Nonlinearity	<1% (≤ 1 MHz) <2% (4 & 8 MHz)	<1% (≤ 1 MHz)		
Operating temperature (@ +20° C ambient)	-60° C guaranteed (air); -75° C typical (liquid cooling with CoolCube recirculator)			
Dark current*	< 0.01 e/p/s at -60° C			
Clock-induced charge (CIC) (typical)	$<0.02~e/p/frame$ (2 or 3 $\mu s~$ vertical shift @ 8 MHz ADC)			
Electron multiplication (EM) gain	1 to 1000x, controlled in linear, absolute steps			
Digitization	16 bits			
Vertical shift rate	1600² : 2 or 3 μ s/row (optimized for EM); 4 or 6 μ s/row (optimized for LN) 1600⁴ : 3 or 4 μ s/row (optimized for EM); 5 or 6 μ s/row (optimized for LN)			
Spectral rate @ 8 MHz	1600 ² Full Vertical Bin: 1150 fps Custom chip 20 rows binned: 2150 fps 1600 ⁴ Full Vertical Bin: 600 fps Custom chip 20 rows binned: 2050 fps Single row: 4500 fp			
Binning	Flexible binning in vertical, and 2x to 32x in horizontal			
Operating systems supported	Windows 8/7 (64-bit) and Linux (64-bit), Windows 8/7/XP (32-bit)			
I/O signals	Exposure, Readout, Trigger In, Trigger Out, Waiting for Trigger			
Operating environment	+5 to +30° C ambient, non-condensing atmosphere			
Data interface	Gigabet Ethernet (GigE)			
Dimensions Weight	7.93 inches (20.15 cm) x 6.70 inches (17.02 cm) x 5.8 inches (14.73 cm) L x W x H Approximately 9.2 lbs (4.2 kg)			
Software-selectable gains - Low noise amplifier - Electron multiplication amplifier	High 1 e-/ct 2.5 e-/ct	Medium 2 e-/ct 5 e-/ct	Low 4 e-/ct 10 e-/ct	

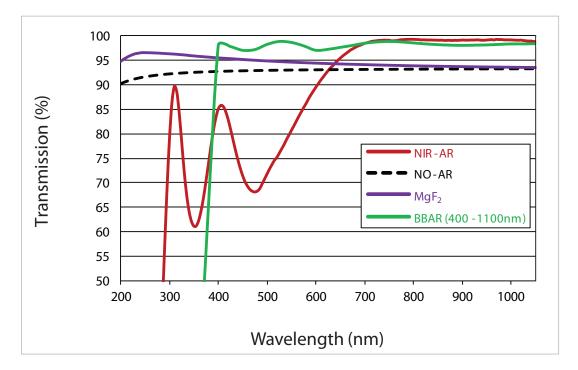

All specifications subject to change.

* Typical

ProEM+: 1600 eXcelon3 Rev. P4.1

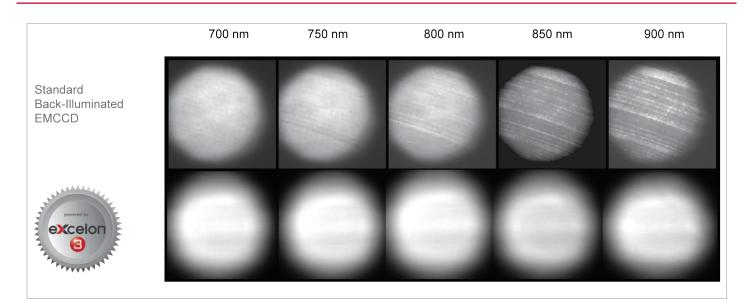
QUANTUM EFFICIENCY CURVE

NOTE: Graph shows typical Quantum Efficiency (QE) data measured at + 25°C, representing expected performance at this temperature. QE will be lower at operating temperature. For the best results for your application, please discuss the specific parameters of your experiment with your sales representative.


ProEM+: 1600 eXcelon3 Rev. P4.1

Page 3 of 5

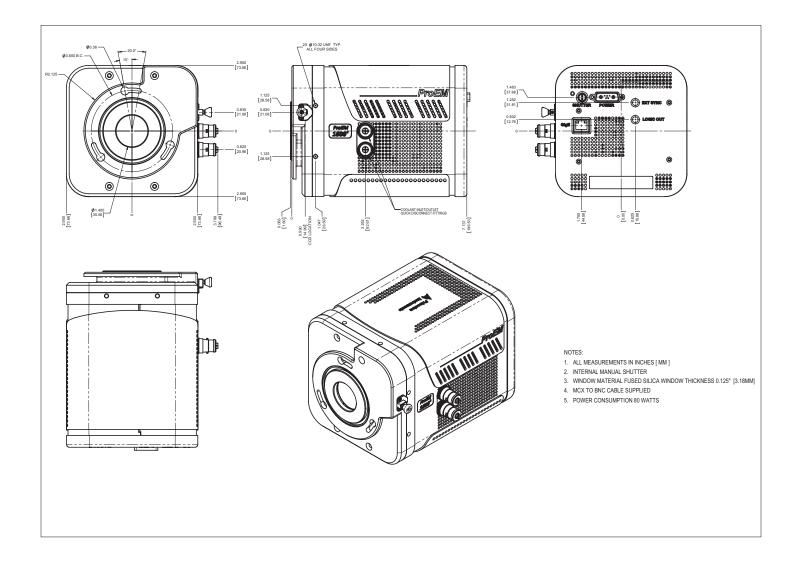
Princeton Instruments | 3660 Quakerbridge Rd | Trenton, NJ 08619 USA | +1 609-631-4000 | www.princetoninstruments.com | info@princetoninstruments.com


VACUUM WINDOW AR COATINGS

NOTE:

Standard anti-reflection (AR) coatings shown. Custom AR coatings and wedge window options are also available. Contact your local sales representative for more information.

eXcelon PERFORMANCE



Data taken with white light source through a monochromator comparing etaloning performance of eX celon vs conventional back-illuminated EMCCDs.

ProEM+: 1600 eXcelon3 Rev. P4.1

OUTLINE DRAWING WITH SPECTROSCOPY MOUNT

